Politécnica del Litoral

Tania Peralta tgperalt @espol.edu.ec FICT - ESPOL

Melanie Menoscal mmenosca@espol.edu.ec FICT - ESPOL

Gianella Bravo gmbravo@espol.edu.ec FICT - ESPOL

Victoria Rosado vrosado@espol.edu.ec FICT - ESPOL

Maurizio Mulas

 mmulas@espol.edu.ec FICT - ESPOLLuis Jordá-Bordehore 1.jorda@upm.es Universidad Politécnica Madrid

ROCK SLOPE STABILITY ANALYSIS USING TERRESTRIAL PHOTOGRAMMETRY AND VIRTUAL REALITY ON IGNIMBRITIC DEPOSITS

PROBLEM

Puerto de Cajas is a crucial high-altitude pass in Ecuador, linking the coastal region to the city of Cuenca. The stability of its rocky massif is carefully maintained through assessing blocks and discontinuities, ensuring safe passage. Studying slope stability requires meticulous evaluation to comprehend potential instability. Direct data collection is vital for kinematic analysis, while terrestrial photogrammetry helps discern geometric features at high elevations. The objective is to integrate field observations with kinematic analysis to determine the stability of these rocky formations

MAIN GOAL

The primary objective of this study is to assess rock mass stability through mapping and processing techniques, highlighting the benefits of each applied methodology (SMR, Q-slope, and kinematic).

METHODOLOGY

Analyzing the stability of rock slopes within jointed rock masses at shallow depths requires a systematic approach to evaluate the orientation and strength of discontinuities such as joints, strata, and faults, which directly influence their stability.

In this study, advanced techniques are employed to obtain data from areas that are inaccessible for the application of the methodologies (SMR, Q-slope, and kinematic).

RESULTS

RQD: 70-80
UCS (Mpa): 40 RMR: 33

RQD: 77
Jn, Jr, Ja: 12-4-4
Type of failure: (4 Joint sets identified) \quad Q-Factor: 0.75 Wedge (J1- J3), Toppling (J1), Planar
(J1), Planar (J2)
SMR: 40.5-37-38-10
J3), \boldsymbol{Q}-Slope: 0.16
$\boldsymbol{\beta}^{\circ}: 49$ J3), Unstable (Toppling: JI ;Planar: Stability: Transition J1), Completely unstable Planar: J2)

CONCLUSIONS

This study integrates various methods for rock mass data collection and stability analysis. While smartphone apps efficiently measure slope characteristics, traditional compass methods remain indispensable. Terrestrial photogrammetry enhances safety and reduces costs in remote areas like Cajas

Results varied using the Q-slope method, particularly for Slope 2, indicating the need for combined methodologies. All slopes demonstrated susceptibility to different types of failures, underscoring the importance of integrated analysis for understanding slope stability

Slope N°	SMR	Q-Slope	Kinematic	Visual
1	Unstable	Stable	Unstable	Unstable
2	Unstable	Transition	Unstable	Unstable
3	Unstable	Stable	Unstable	Unstable

